Glider: Serverless Ephemeral Stateful Near-Data Computation

Daniel Barcelona-Pons
daniel.barcelona@urv.cat
Universitat Rovira i Virgili
Tarragona, Spain

ABSTRACT

Serverless data analytics generate a large amount of intermediate
data during computation stages. However, serverless functions,
which are short-lived and lack direct communication, face signifi-
cant challenges in managing this data effectively. The traditional
approach of using object storage to carry the data proves to be
slow and costly, as it involves constant movement of data back and
forth. Although specialized ephemeral storage solutions have been
developed to address this issue, they fail to tackle the fundamen-
tal challenge of minimizing data movements. This work focuses
on incorporating near-data computation into an ephemeral stor-
age system to reduce the volume of transferred data in serverless
analytics. We present Glider with the aim to enhance communica-
tion between serverless compute stages, allowing data to smoothly
"glide" through the processing pipeline instead of bouncing be-
tween different services. Glider achieves this by leveraging stateful
near-data execution of complex data-bound operations and an ef-
ficient I/O streaming interface. Under evaluation, it reduces data
transfers by up to 99.7%, improves storage utilization by up to
99.8%, and enhances performance by up to 2.7X. In sum, Glider
improves serverless data analytics by optimizing data movement,
streamlining processing, and avoiding redundant transfers.

KEYWORDS

Serverless, cloud, ephemeral, near-data, stateful, intermediate data

ACM Reference Format:

Daniel Barcelona-Pons, Pedro Garcia-Lopez, and Bernard Metzler. 2023.
Glider: Serverless Ephemeral Stateful Near-Data Computation. In 24th In-
ternational Middleware Conference (Middleware °23), December 11-15, 2023,
Bologna, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3590140.3629119

1 INTRODUCTION

Serverless analytics rely on fleets of functions (FaaS) to handle data
processing workloads [16, 17, 22]. However, these functions are
stateless, short-lived, and cannot communicate directly with each
other. To coordinate multi-stage jobs, FaaS must resort to external
solutions to handle large volumes of intermediate data. This is a
well-known issue [20, 27, 33, 37] product of a data-shipping archi-
tecture, which causes heavy data traffic, strains the network, and
often becomes a bottleneck, especially on the limited bandwidth of
Faa$ [26, 44]. Moreover, due to the limited resources of functions,

Middleware 23, December 11-15, 2023, Bologna, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 24th International
Middleware Conference (Middleware 23), December 11-15, 2023, Bologna, Italy, https:
//doi.org/10.1145/3590140.3629119.

Pedro Garcia-Lopez
pedro.garcia@urv.cat
Universitat Rovira i Virgili
Tarragona, Spain

Bernard Metzler
bmt@zurich.ibm.com
IBM Research Europe

Zurich, Switzerland

jobs may require further partitioning and additional stages, increas-
ing intermediate data and challenging its effective management.

A solution to the problem of serverless data-shipping is still not
available on cloud platforms. Although optimizations of the storage
technology [27, 33, 37] (such as faster in-memory stores, smart par-
titioning, or specialized ephemeral stores) have been explored, they
fail to address the fundamental issue, namely the long-distance
transfers of large data. Some approaches have explored data lo-
cality [2, 40] and various forms of caching data within the FaaS
platform [31, 35, 41, 47]. However, these approaches require modi-
fications to the platform (which hinders the qualities of FaaS) and
are limited to handling small amounts of data.

Near-data processing (NDP) is a common solution for reducing
data movement by executing logic on hardware accelerators embed-
ded in disks [1] or NICs [13, 14]. On a systems level, active storage
addresses data-shipping in cluster computing by performing op-
erations on object storage nodes that intercept data accesses [30],
achieving impressive reductions in data ingestion [19]. However,
this approach is not feasible in the cloud due to resource contention
and isolation challenges in multi-tenant setups [11, 36].

To overcome the challenges of inter-stage communication in
serverless analytics, we introduce Glider, a novel ephemeral stor-
age service for the cloud that incorporates serverless ephemeral
near-data computation. Glider is designed as a companion to FaaS,
enabling complex data connections between functions engaged in
big data analytics. To communicate intermediate (ephemeral) data,
it makes sense to also employ ephemeral operations that transform
it along the way. To the best of our knowledge, Glider is the first so-
lution to integrate ephemeral computation into ephemeral storage.
To achieve this, Glider introduces storage actions, which encapsulate
stateful computation as full-fledge storage elements (i.e., at the level
of files in a file system). This enables them to handle complex data-
bound operations like aggregates or shuffles. Additionally, actions
provide an I/O streaming interface crucial for data streamlining
and efficient resource utilization in serverless functions. In essence,
Glider not only enables data streaming between function groups
or stages but also allows for in-line data transformation with com-
plex arbitrary patterns, eliminating the need for redundant data
transfers. We evaluate Glider on various applications, including
a large-scale genomics job with over 700 serverless functions. In
them, Glider reduces intermediate data transfers by up to 99.7%,
storage accesses by up to 50%, and overall storage utilization by up
to 99.8%. Glider is open-source and available online [18].

In summary, this work makes the following contributions:

e We present Glider, the first system to combine ephemeral
computation and ephemeral storage for serverless analytics.

e We propose storage actions, an encapsulation for near-data
ephemeral stateful computation.

https://orcid.org/0000-0002-6051-9424
https://orcid.org/0000-0002-9848-1492
https://orcid.org/0009-0008-2556-3746
https://doi.org/10.1145/3590140.3629119
https://doi.org/10.1145/3590140.3629119
https://doi.org/10.1145/3590140.3629119
https://doi.org/10.1145/3590140.3629119

Middleware *23, December 11-15, 2023, Bologna, Italy

Disaggregated Unified

“o

o
OnE

|

|

|

O~=
RSk
|

Compute | _Sto Compute + Storage

Daniel Barcelona-Pons, Pedro Garcia-Lopez, and Bernard Metzler

Active Storage

RR
(((f'z, A0

Compute | St Compute _ Storage |

Figure 1: Architectural approaches to data-shipping. See §8 for an extended discussion.

e We implement Glider and show reductions in intermediate
data transfers (99.7%), storage accesses (50%) and utilization
(99.8%) for serverless data processing jobs.

2 BACKGROUND AND MOTIVATION

2.1 Serverless and temporary data

Most data transferred in analytics workloads is temporary. That is,
the intra-job data created, handled, or consumed during processing
are, thus, not relevant after the job completes. In other words,
temporary data is short-lived and easy to regenerate. Efficiently
handling temporary data requires a dedicated solution that correctly
handles its peculiarities. For instance, the variability in size and
access patterns need a versatile system that embraces it. This kind
of specialized stores exist in cluster computing [42].

In serverless analytics, handling temporary data is challenging.
Cluster solutions may keep intermediate data in memory across
compute stages or directly transfer it between workers. Unfortu-
nately, FaaS functions preclude these methods due to their transient
nature and inability to communicate directly. Instead, functions are
forced to ship data through remote storage.

The common choice to relay this data is object storage, which is
too slow for some types of temporary data [23, 42]. Faster storage
solutions are not available as cloud-managed serverless services.
In fact, achieving serverless properties for high-performance (in-
memory) stores is not trivial. One recurrent problem in this en-
deavor is fine-grained elasticity of in-memory stateful elements;
an open research topic [25, 27, 41]. Nonetheless, serverless data
processing poses important challenges that cannot be solved with
just faster storage. The fundamental issue is the constant movement
of temporary data between FaaS and the storage service, which is
a by-product of a data-shipping architecture.

2.2 Data-shipping in serverless

Data-shipping (repetitive transfers between compute and storage)
has presence in the literature due to the pressure it exerts on the
network. The peculiarities of FaaS (limited memory and compute
power, short lifespan, small bandwidth, etc.) increase data transfers
and their cost [20], resulting in sub-par performance for applica-
tions. Figure 1 illustrates different approaches to this problem.
First, several works [22, 33, 37] optimize data dependencies with
faster stores and intelligent data partitioning models to achieve the
best cost to performance tradeoff (a in Figure 1). Still, they fail to

Author’s preprint version — do not distribute.

reduce the amount of transfers and thus suffer the performance
and financial costs of shipping lots of data.

In light of this, other projects decide to fully combine a FaaS
platform and a store (B in Figure 1). Works range from functions
sharing memory [2, 40] to Faa$S platforms implemented on top of
cache stores [31, 35, 41, 47]. Unfortunately, this model does not
work well for data processing jobs. Literature shows that compute
and storage tiers must be disaggregated and isolated to correctly
scale them to their distinct demands and avoid contention [11, 36].

A solution to data-shipping is to ship code to data instead: offload
tasks to the storage system to minimize the amount of data trans-
ferred between clusters (c in Figure 1). Active storage [19, 30, 36]
exhibits impressive improvements for cluster data ingestion, but
it only supports object stores, which are unfit for ephemeral data
(§2.1). Also, it is not applied in multi-tenant settings due to the
difficulty to scale compute and durable storage jointly and avoid
performance interference [11, 36]. Therefore, the solutions are lim-
ited to a layer of stateless data access interception. Ephemeral data
stores, in contrast, are more elastic since they avoid data redistri-
bution when scaling the system thanks to its transient nature [42].
This enables currently unexplored ways to integrate computation
within a storage system that are more akin to serverless, such as
having both elements independently grow or shrink to the demand
of multiple jobs or tenants and linking them in a single storage
namespace (beyond interception). Further, it creates a unique po-
tential for new types of near-data computation (such as stateful
operations) and new challenges that we discuss shortly (§2.4).

2.3 An overview of Glider

By combining past knowledge on temporary data, its presence
in serverless analytics, and the problem of data-shipping, this pa-
per presents Glider. Glider explores a new approach to face data-
shipping of serverless intermediate data. We observe that the FaaS
platform (where the heavy computation occurs) must remain un-
altered to conserve its properties (e.g., serverless functions must
be able to spawn and expire without depending on stateful com-
ponents) [22, 23]. Hence, to connect compute stages requires spe-
cialized remote storage. Our key principle is that, consequently, to
reduce data movement, we must ship code to storage instead.
Glider defines a novel service model for ephemeral computa-
tional storage. Understanding that temporary data needs a special-
ized ephemeral store [27], Glider expands this idea by including
ephemeral computation within it (Figure 1). Data and compute
populate the same system and may enjoy better links or co-location,

Glider: Serverless Ephemeral Stateful Near-Data Computation

but they remain isolated and are managed independently. Since
ephemeral data and computation are short-lived and easily regen-
erated, it is easy to allocate and remove them from the system,
which allows system elasticity by the join and leave of resources
without redistribution [27]. Near-data computation allows to run
data-bound operations with low access overhead and to minimize
both, the necessary connections from serverless functions to storage
and the amount of data they transmit. Thanks to this, our solution
lets the data “glide” through the computation pipeline, meaning
that data is transformed (advances processing) with every transfer,
instead of jumping back and forth between services.

2.4 Challenges

We study the following challenges in facing data-shipping of server-
less intermediate data with an ephemeral computational storage.

Synergize compute and storage. Running computation within the
storage tier is tricky, especially in a multi-tenant service. If the
compute operations grow uncontrolled on storage resources, they
create contention and highly impact performance for basic storage
operations and other users [11, 36]. A closed library of storage
operations may enable such control, but pushing meaningful opera-
tions to storage requires allowing users to define them in arbitrary
code. Additionally, in a serverless system, the expected fine-grained
elasticity restricts how resources may be managed.

Stateful computation. Serverless analytics stages communicate
in complex patterns that suppose huge data transfers with current
solutions. Active storage intercepts data accesses with processors
that are anonymous and stateless. This is not enough. First, multiple
accesses to the same data trigger duplicate computations and waste
resources. But more importantly, stateless processors fail to reduce
data transfer in complex patterns such as aggregations or shuffles.
A simple word count requires multiple tasks to send partial counts
to storage and another stage that reads them all to complete the
counting. All data is transferred twice without alteration. Stateful
processors solve these patterns easily by allowing to connect to the
same processor multiple times. For instance, a processor may hold
a counter that aggregates the partial word counts of multiple tasks
and thus provide the final counting with a single data transfer.

Large intermediate data. Intermediate data in data processing
workloads may be very large, such as when shuffling in MapReduce
jobs, and thus very hard to handle correctly. For instance, tradi-
tional in-memory caches are not prepared to support large amounts
of data. For this reason, there exist specialized systems to support
temporary data efficiently [42]. Again, this is especially relevant
for serverless computing. On one hand, resource limitations pro-
hibit workers to load big files entirely. On the other hand, their
often-limited network burdens them with long transmission times.
Similarly, ephemeral near-data computation must also handle large
data effectively to remain lightweight and easy to manage.

Relevant considerations. For temporary data, usual storage fea-
tures such as durability and fault-tolerance are not a priority [42].
Durability is mostly irrelevant for short-lived data. Fault-tolerance
is often implemented at the level of the compute framework (e.g.,
a function orchestrator in serverless). Thus, although generally

Author’s preprint version — do not distribute.

Middleware *23, December 11-15, 2023, Bologna, Italy

useful for storage, its management hindrances and overheads are
hard to justify for ephemeral data.

Two projects in the literature propose serverless ephemeral stor-
age systems. Pocket [27] builds automatic scaling and multi-tenant
management into an ephemeral storage solution with serverless in
mind. Its evaluation shows huge improvements for storing interme-
diate data against existing storage solutions in the cloud. Jiffy [25]
designs a scalable remote memory for serverless functions to use as
a shared space that grows and shrinks on demand. Glider is orthog-
onal to these projects and it may benefit from their contributions
on dynamic elasticity and multi-tenancy. However, they do not
address the problems derived from data-shipping. Therefore, here
we focus on the novel challenges presented before.

3 GLIDER

We present Glider, a novel serverless service model for ephemeral
computational storage. In essence, Glider is a storage system for
large temporary data with capacity for ephemeral computation
within it. The goal is to exploit the synergy of both elements to-
gether to counteract the issues of data-shipping in serverless data
processing workloads. To that end, Glider allows to reduce (i) the
amount of data transferred (bytes through network), (ii) the number
of transfers (storage accesses), and (iii) storage utilization (stored
data). To wit, Glider is conceived as a companion to serverless com-
puting (FaaS) services that allows data to smoothly “glide” through
the different computation stages. Specifically, its near-data compu-
tation allows to streamline data processing between the compute
and storage systems and, thus, avoid transferring back and forth
the same data multiple times.

As described previously, the challenges of Glider include an effec-
tive integration of compute and storage, the necessity of ephemeral
computation to be flexible and stateful, and the imperative of a
practical interface to handle large data. Therefore, Glider defines
storage actions to encapsulate computation with three key prop-
erties: (i) they are integrated as addressable storage elements in the
namespace; (ii) they are defined as arbitrary objects with stateful
logic; and (iii) they offer a common streaming I/O interface.

Near-data computation. Glider organizes the ephemeral storage
with namespaces, a logical structure of storage elements (e.g., files
or directories). Storage actions are integrated as a type of storage
element. In particular, actions have a name or identifier, and appli-
cations use it to directly read or write on an action, or to organize
them in the namespace. Actions are automatically managed and
distributed by the system in the same way as other elements. This
simplifies its usage, interaction, and management.

Glider solves resource interference with storage spaces. A storage
space is a set of isolated resources that contributes a certain amount
and type of storage capacity to a specific namespace. Some storage
spaces contribute data capacity, while others compute capacity. This
brings two important benefits. First, the capacity of each namespace
is dynamic and adapts to demand through the joining and leaving
of storage spaces, providing fine-grained resource scaling. Second,
compute and data elements coexist for improved synergy while
isolated to improve management and avoid contention.

Middleware *23, December 11-15, 2023, Bologna, Italy

Arbitrary stateful code. Actions trigger a computation whenever
they are accessed. This computation is defined by arbitrary, user-
provided code that processes the data in and out. Thanks to being
part of the storage namespace, actions are stateful and may be
directly addressed multiple times. In consequence, an operation
on an action may depend on the results of a previous one, which
makes them great for aggregating or caching data, among many
other uses. Like any other element in Glider, actions are ephemeral,
as they represent intermediate data connections, and should not
hold long term data.

I/O streams. Consuming and producing data in small chunks
is key to process large data in small-sized workers like serverless
functions. Therefore, Glider defines a stream-based I/O interface
for all storage elements, including actions, that workers can handle
with a small memory footprint. For actions, this adds extra benefits.
A worker-action stream allows parallel processing at both ends in a
simple and straightforward way to improve the overall performance
and storage utilization (e.g., with filters or aggregations).!

3.1 What code should we ship?

When offloading computation to storage, which tasks are “appropri-
ate”? Essentially, the objective is to reduce the amount of network
data transfers. Also, we may argue that offloaded tasks should be
lightweight and transient to ease integration into storage. With this
in mind, we identify two types of computation: compute-bound
and data-bound tasks. Compute-bound tasks truly shine in the ded-
icated compute tier, where they may be freely scaled, and would
suffer from being attached to storage. Examples of these tasks are
those that perform number crunching and heavy mathematical
computations like matrix operations or ML training. In contrast,
data-bound tasks are the ones that benefit most from near data
computation and have a direct effect on data transfers. These are
data management tasks. Therefore, it makes sense to offload data-
bound computations to storage, while we should never do so with
compute-bound tasks. In the case of data-bound tasks, traditional
active storage only supports stateless tasks such as data filtering,
transformation, or simple queries. Storage actions are stateful and
may host complex data-bound operations such as aggregations,
data shuffling, indexing, or interactive queries.

3.2 Using storage actions

The Glider model? is, in essence, that of a common cloud-managed
storage service. Users manage their storage namespace, where they
add or remove elements in a structure. Applications only interact
with storage elements, which have typical access operations for
reading, writing, or removing them (e.g., CRUD). Storage spaces are
managed by the service, never by users. However, a cloud vendor
must put some limitations to efficiently manage them. To this end,
a service may allow users to configure some parameters (e.g., size,
compute power, timeout) to adjust spaces and the service behavior
for a specific namespace.

To use storage actions, programmers should first code its logic
by following an interface. The interface defines a set of functions

The cloud has adopted this idea recently with a similar objective [4, 5].

2Here we provide an overview of how to interact with the Glider service model. Details
of our concrete implementation are provided later (§6).

Author’s preprint version — do not distribute.

Daniel Barcelona-Pons, Pedro Garcia-Lopez, and Bernard Metzler

that the developer may implement as desired. Each of these code
elements will run for different operations performed on the action.
The main operations are reading and writing, for which the appli-
cation utilizes I/O streams. Action definitions (the code) must be
deployed into the service. This procedure is similar to deploying a
function in a Faa$S platform. Users upload a package and register
each action so that they may reference them later for instantiation.
The service may also allow certain action configuration parameters.
Actions are instantiated as any other storage element. Applications
must provide an identifier within the storage namespace and a ref-
erence to the action definition to instantiate. Likewise, they may get
references to existing actions through their identifier. The reference
may be used to delete the action or perform data operations by
obtaining an I/O stream.

4 SYSTEM DESIGN

To evaluate the Glider model, we first define a concrete system
design by extending a multi-tiered, high-performance ephemeral
storage architecture: the NodeKernel [42]. We choose NodeKer-
nel because it is extensible and specialized for ephemeral data. Its
design may easily be expanded for managing multi-tenant deploy-
ments and allows to grow and handle resources elastically at fine
granularity [27]. This makes it a great substrate for a serverless
service.

With Glider, we integrate into NodeKernel the concept of storage
actions (i.e., ephemeral near-data computation, arbitrary stateful
logic, and I/O streams), which add multiple desireable benefits for
serverless data processing applications. Near-data computation
reduces the problems derived from a data-shipping architecture. Its
statefulness allows to redistribute computation for more efficient
pipelines. And the I/O interface allows to process large data with
modest-sized workers and parallelize execution.

4.1 NodeKernel in brief

NodeKernel [42] is a state-of-the-art storage architecture special-
ized on temporary data in data processing workloads. We summa-
rize its key components as a baseline for Glider’s contributions:

Storage semantics. The high-level storage semantics are provided
as data “nodes” and organized in a hierarchical namespace. Nodes
are defined as specialized data types implementing a common inter-
face with basic operations to handle data (e.g., read and write) or
structure (e.g., getPath and addChild). Each node may hold data
of arbitrary size. The general organization is managed by a shared
storage kernel, which is responsible for allocating storage resources
for nodes, handling the hierarchical namespace, and implement-
ing data access operations. Applications connect to the kernel to
create, look up, remove, and attach or fetch data to/from nodes. To
identify nodes within the storage hierarchy, they are given path
names similarly to a file system. Data nodes are extensible and may
provide different specialized data access semantics.’

System architecture. NodeKernel manages data in a set of meta-
data and storage servers. Internally, data is handled in blocks. A
block is a fixed sequence of bytes residing in a storage server. The

3NodeKernel defines five custom node types that semantically represent data (File
and KeyValue), containers (Directory and Table), or specialized structures (Bag).

Glider: Serverless Ephemeral Stateful Near-Data Computation

nodes in the storage hierarchy present their data as a byte stream
that abstracts a sequence of blocks. The metadata servers* adminis-
ter the hierarchical namespace and the fleet of blocks. The storage
servers allocate storage blocks and register them on a metadata
server. The metadata servers maintain a list of free and used blocks
(and their mapping to storage servers) and assign them to nodes as
needed. This way, data is distributed across the cluster. To perform
data operations, clients first contact a metadata server, and it replies
with the location of the storage block(s) affected by the operation.
The client then uses this information to perform the operation on
the appropriate storage server(s). Structure operations are directly
executed at the metadata server.

To accommodate for different types and sizes of data, NodeKernel
supports a tiered storage design. Each storage server implements
a type of storage (such as DRAM, NVMe, or HDD) that it uses to
allocate its blocks. Storage servers are deployed as logical entities
encapsulating a set of resources, which allows them to exploit the
different hardware in the same physical or virtual machine but
manage them separately. When a storage server joins the system,
it is registered into one, and only one, storage class. Storage classes
allow to group storage servers and create relations between them
as users find appropriate. Typically, a storage class could represent
a concrete technology, so that we may have a preferred DRAM tier
that falls back to an NVMe tier when full. This freedom is key for
temporary data that may have disperse requirements.

4.2 Storage actions

Glider adds storage actions to NodeKernel to achieve ephemeral
near-data computation. A storage action is a new storage element
that encapsulates a user-provided stateful computation with a
stream I/O interface. Towards this integration, we first identify
storage spaces within the NodeKernel architecture. Then, we add
two components to support actions: a new node type and a new
storage server type. This also requires new logic in the metadata
server and the necessary client tools to create and operate actions.

Near-data computation. Glider leverages storage servers to create
storage spaces, our abstraction for a particular set of contributing
storage or compute resources. We run storage servers within con-
tainers to provide the necessary isolation and elasticity to harbor
compute and storage elements in harmony within the same sys-
tem. With this, each element enjoys isolated resources to avoid
contention and performance degradation. But at the same time,
they are managed equally within the system for improved synergy.
The isolation and transient model of storage servers has already
been exploited as a substrate for a multi-tenant storage solution
and to elastically scale storage resources on demand in a serverless
flavor [25, 27] (orthogonal to Glider). Like these projects, Glider
inherits from NodeKernel the view that transient data can be easily
regenerated in case of a server failure (§2.4). The same applies to
actions and their state. If needed, failure handling and consistency
mechanisms may be applied orthogonally (beyond this paper), such
as action checkpointing. If a stateful action interacts with other data,
checkpointing should also consider this dependency to correctly re-
store them (e.g., synchronizing persistence of both elements). Users

4Metadata servers may distribute their work by partitioning the namespaces, allowing
to scale the system if needed.

Author’s preprint version — do not distribute.

Middleware *23, December 11-15, 2023, Bologna, Italy

Storage
Namespace root

Application

’_I:

Serverless
Workers |-

]

PN Other
. -7 Clients [

<——-Data access

Figure 2: Glider’s storage semantics.

may develop their actions with such mechanisms as required by
their applications in expense of performance.

Our design focuses on the integration of compute elements and
omits storage space management. We leave this topic for future
research. Ephemeral storage and compute elements have require-
ments that vary between applications. Also, a commercial service
must put limits to resource occupancy to effectively manage the
pool of resources. The service should thus determine the granular-
ity of storage spaces and the mechanisms to scale them through
evaluating a tradeoff between versatility and resource utilization.
Some decisions include configurable capacity, CPU time limitation,
or timeouts for storage spaces.

The action node type. From a high-level, logical view, actions
are a new node type in the storage semantics, implementing the
common interface. As such, they may be organized in the hierar-
chical namespace and access operations are done by obtaining I/O
streams to send and retrieve data. Figure 2 shows a view of Glider’s
storage semantics and this integration. Action nodes do not simply
store and then return the data like the other node types, but they
house an in-memory object (OOP) that may process the data with
arbitrary stateful logic. Each operation on an action node triggers
the execution of one of the object methods. E.g., an aggregation
during a write or an infinite data generation in a read.

Storage blocks for actions. For other node types, the metadata
server assigns them storage blocks in a chain as their attached data
grows. Actions, in contrast, represent computational entities. As
such, they operate on all their data in the same place and may not be
split into multiple storage blocks. Therefore, actions are allocated
in a single block.

The active storage server. Glider adds a new type of storage server:
the active storage server. Figure 3 draws Glider’s data management
architecture, including active servers. Like the others, active servers
are encapsulations of storage space. They register themselves with
the metadata servers and contribute blocks for a namespace. But
there are two key differences: (i) they are grouped into an active
storage class, and (ii) their storage blocks are, in fact, action slots.
The dedicated storage class allows the storage kernel to allocate
action nodes only on active servers. Action slots facilitate managing
the size of actions in terms of resources. Similar to other types of
storage servers that encapsulate a space for data (a range of bytes
in memory or disk), active servers encapsulate a dedicated set of

Middleware *23, December 11-15, 2023, Bologna, Italy

~| Serverless
Workers
-

g 7
- / Data access
i

Metadata lookup

Network L Storage space
’ /T Action Slot ’ Storage block ’
v : ;
[[¢ [[3 [

o o T T
ool el mm

Metadata Active
Servers Class

Storage Storage
Class1 Class 2

Storage
Class N

Figure 3: Glider’s storage data management architecture.

resources (memory and compute power) for running actions. Thus,
the size of an active server and the number of slots it registers
determine the capacity and performance of its actions. Since the
performance requirements of actions depend on the application,
it is up to the developer to configure these properties; similar to
configuring function memory size in a Faa$ platform.

Distributing actions. Action distribution across storage servers
is an interesting topic that opens lines of research on its own. Our
model does not define a concrete mechanism as they can be applied
to Glider orthogonally. The chosen method may depend on the
service resource management, or be open to the requirements of a
specific application. A service may put effort in co-locating actions
and other storage elements to exploit locality. But others may invest
in connecting remote storage spaces with a high-performance net-
work [24] to enable great performance even without co-location and
increase elasticity. There is extensive work in the literature about
sophisticated scheduling mechanisms for storage and compute el-
ements with dependencies, e.g., gang scheduling [21], or affinity
languages [38], to name some. Following NodeKernel [42], we (§5)
distribute data and actions uniformly across available servers. Glider
embraces the same policy as Pocket [27] to avoid redistribution
when scaling the system. Since ephemeral data and actions in Glider
are short-lived, migrating them has high overhead. Instead, thanks
to their isolation, new storage spaces may be added freely and easily
removed when their ephemeral contents expire.

Accessing actions. Actions in Glider are storage elements at the
level of, e.g., files. This is very different from other computational
storage solutions [13, 30, 36] whose computations only intercept
accesses to other elements. From the outside, actions contain data
that may be accessed through I/O streams. Each stream opened to
an action, however, triggers the execution of one of its methods on
the server. The method handles the other end of the stream, so that
client and action may pass a flow of data.

Like with other node types, clients first contact a metadata server
to obtain the location of the action. Then, clients communicate di-
rectly with the corresponding storage server to perform operations.
Since actions only occupy a single block (an action slot), each client
only needs to contact the metadata server once.

The action I/O streams work similar to reading or writing data
in the other types. Long transfers are split into multiple chunks of
data, and each chunk is sent in a basic remote data operation. Glider

Author’s preprint version — do not distribute.

Daniel Barcelona-Pons, Pedro Garcia-Lopez, and Bernard Metzler

allows to perform these operations asynchronously for concurrent
processing and better network utilization.

In contrast with other storage servers, active servers feed the data
into the action object, instead of simply storing it. The goal is that
action methods also process an I/O stream. To achieve this, actions
run in execution threads decoupled from the network workers
and communicate with them through task queues. When a request
(basic operation) reaches the server, a network worker identifies
its type and destination and queues it as a data task for a specific
action. Each I/O stream has its own task queue that collects the
multiple data tasks performed on it. Action threads consume task
queues by running the appropriate action method. While the code
of the action method consumes or populates its stream, internally,
data tasks are processed and completed. The client decides when to
finalize the transfer by closing the stream on its side. This sends a
final request that closes the stream at the server side and ends the
method execution.

Actions and concurrency. As remote elements, multiple clients
may access actions concurrently. Since actions are stateful elements,
concurrent execution of their logic may result in unexpected behav-
ior due to uncontrolled modification of the action state. Therefore,
we need to define a concurrency model for actions that allows
programmers to easily reason about their execution.

Glider executes each action as if it were run by a single thread.
This means that, at any time, there is only one method being run on
each action. Multiple actions may freely execute concurrently. This
effectively eliminates unexpected state modifications. Furthermore,
it simplifies action development to avoid complex concurrency
issues. To achieve this, action threads obtain exclusive control of
an action object while running one of its methods.

There are special cases where an application may benefit from
multiple I/O operations running concurrently on the same action.
For instance, if we want multiple clients to read data from an action
at the same time, the default concurrency model will serialize the
operations from each client, holding the read from one of them until
the other one completes. To allow multiple clients to access actions
concurrently, Glider supports action interleaving. Interleaving may
be configured when creating the action. The concept is applied
similar to Orleans [10]. When activated, the execution of an action
method may yield control while it is waiting for more I/O tasks. In
such event, another action method may take control. Execution is
still guaranteed to be single threaded, but methods may take turns
in execution before their completion.

5 IMPLEMENTATION

Glider is implemented in about 3K SLOC in the Java language by
extending Apache Crail’s base implementation of the NodeKernel
architecture. It inherits Crail’s metadata plane, server management,
and basic node types. On top, Glider integrates storage actions
and all their features to resolve its targeted unique challenges. We
implement the new action node type and the new active server
type, modify the metadata servers to support the new elements,
and provide new client abstractions to access them.

Metadata servers in Glider include new structures to organize ac-
tion nodes in the storage hierarchy and the action slot management
logic, including the new active class. Action nodes are distributed

Glider: Serverless Ephemeral Stateful Near-Data Computation

across the active storage servers that joined that class. Like Crail,
we uniformly distribute actions and objects in the system with
a round-robin mechanism. Sophisticated action distribution and
resource management are beyond the scope of the paper (§4.2).

Our prototype active server implementation is based on the
DRAM-backed storage server in Crail. Instead of plainly storing
data in memory, it runs an action manager object that handles
the creation, execution, and deletion of action objects. The action
manager allocates slots for actions depending on configuration and
available resources, and it registers them on the metadata servers.

Active servers employ a pool of network threads that respond to
client calls. Create and delete requests do so on the corresponding
action object in memory. Data access methods are executed by
a separated pool of action threads. This allows to decouple the
execution of action methods from the individual data operations
that enable the stream I/O interface. Each method execution is
assigned an id and sequence number that are used to create a task
queue. Action threads consume these queues to run action methods.
The single-thread-like execution of action methods is achieved with
locks. Action threads take the action lock while running one of its
methods. For actions with interleaving, the lock is released when
the method is waiting for more data in its queue.

6 USING GLIDER

The interface of Glider provides simple abstractions with two goals:
1) actions are managed like other storage elements, and 2) they are
coded and deployed like functions in FaaS.

6.1 Application interface

Glider’s application interface, summarized in Table 1, extends the
one in Crail with new components to manage storage actions. The
top-level object in the interface is the StoreClient, that connects
to a specific namespace. Its methods allow to create, lookup, and
delete data nodes in the storage hierarchy. The identifier for nodes
is their path in the namespace, like a file system. When creating a
new node, a parameter (sc) allows to specify a preferred storage
class. Action nodes are always stored in an active class. Applications
receive proxy references to nodes to interact with them.

The action node proxy data type implements four basic prim-
itives. The create method instantiates an action object into the
node. This method requires a concrete action type definition (action
logic; §6.2). An optional parameter (i1) toggles interleaving for that
action. The delete method removes the action object in the node.
This allows action finalization logic, to change the action definition
on an existing node, or to simply recreate it to clear its state. The
other two primitives allow to obtain I/O streams to transfer data.

It should be noted that all remote operations are asynchronous
and clients handle execution through future objects. This common
pattern integrates with modern software interfaces and allows to
efficiently handle call results or failures. It also allows the construc-
tion of buffered I/O streams, keep a data operation always in flight,
and not block the application on network access. Another imple-
mentation of direct streams gives the user full control of operations.

Author’s preprint version — do not distribute.

Middleware *23, December 11-15, 2023, Bologna, Italy

Table 1: Glider’s application programming interface.

Object Methods

Store create<T extends Node>(path, sc) — future(T)
Client creates a new data node of type T
lookup<T extends Node>(path) — future(T)
finds an existing node at the given path
delete(path) — future(boolean)
deletes an existing node at the given path

Action create<T extends Action>(il) — future(boolean)
Node creates an action object of type T in this node
delete() — future(boolean)
deletes the action object in this node
getInputStream() — InputStream
getOutputStream() — OutputStream
obtains a stream to read or write to this action

Action
Object

abstract onRead(outputStream) — void
abstract onWrite(inputStream) — void
abstract onCreate() — void
abstract onDelete() — void

6.2 Developing actions

To define the logic of actions, developers specialize the Action data
type (Action Object in Table 1). This interface defines four methods;
all of them optional and empty by default. onCreate and onDelete
run when the action node instantiates or removes the action object,
following the analogous method calls to the action node proxy.
They have no parameters and may be used to initialize and finalize
the action object. onRead and onWrite run for each I/O stream
that connects to the action through the dedicated proxy methods.
Both receive one parameter representing the corresponding I/O
stream. The onRead method receives a writeable stream that it
should populate with data as desired. The onWrite method receives
areadable stream from which it may consume the data that is being
written to the action. Applications may use the object fields as
desired to keep a modest action state (e.g., a counter, a small key-
value table, a custom data type, or references to other storage nodes).
Conveniently, action objects get a store client, by default, to access
other storage nodes, including other actions, and construct data
processing patterns within the ephemeral store.

Programmers should make their action definitions available to
Glider before creating actions. To this end, programmers upload
a package containing their definitions, which is then provided to
active storage servers. Each action definition is registered with
a name. Applications may use this name when instantiating ac-
tion objects into storage nodes, as detailed in §6.1. This process
resembles function deployment in Faa$S platforms.

6.3 Application example

Aggregations are one of the main use cases for storage actions. They
exploit the statefulness of actions to receive data from multiple
workers in a single computational element and reduce network
transfers. Moreover, thanks to the I/O streams, applications may

Middleware *23, December 11-15, 2023, Bologna, Italy

FaaS + Ephemeral Storage FaaS$ + Glider
=== - === =

Few KiB

|
|
| D /result_i
|
|

Storage

N Workers Storage

Figure 4: Diagram of a data processing aggregation with and
without actions. For reducer i in a group of them.

store only the merged data (instead of intermediate results in full)
to keep storage utilization low.

We illustrate these cases with a word counting job. Figure 4
depicts a diagram of this workload on Glider and actions (right)
against a solution with FaaS and traditional storage (left). Work-
ers generate the counting for their part of the input text and split
it across the multiple reducers. The reducers then aggregate the
counts into a dictionary each, which may be used in a future com-
putation phase. For simplicity, the figure only shows one reducer
of the group. In the base solution (left), workers write the counts
in storage files. Each worker writes a file for each reducer. Each
reducer then reads their files, aggregates data, and writes a new file
for the next phase. With Glider (right), this lightweight aggregation
is done in storage actions. Workers write their counts directly to
actions. Each action merges them as they arrive and only stores
the aggregated data. A next computation stage may read this re-
sult directly from the action. If the application requires a single
dictionary, the results may be further combined in a reduction tree.
This is easy through concatenating actions, instead of requiring
additional workers and temporary files. In seldom cases that still
require resiliency (§4.2), the user may implement checkpointing to
recover failed actions or idempotence mechanisms to allow worker
retries. More complex mechanisms to maintain consistency across
multiple actions (such as transactions) could also be considered.

The definition of the merger action is shown in Listing 1 with
simplified Java code. This action contains an object field, a dictio-
nary, to save the aggregated data, which is initialized in the creation
method. The onWrite method processes the key-count pairs that
workers write into the action, combining them appropriately into
the local dictionary. Note that our application interface allows to
wrap the input stream with specialized readers, such as to obtain
a stream of lines. This code will run until the stream reaches an
end, meaning that the client has closed the operation. The onRead
method allows to read the aggregation result from the action. For
that, it serializes the local dictionary into the output stream. Note
that closing the stream finishes the operation and notifies the client.

This action benefits from interleaving to allow several workers
to write to the same action concurrently. In this case, an opera-
tion waiting for more text at line 10 may yield control to another
operation. This effectively optimizes network utilization.

Author’s preprint version — do not distribute.

Daniel Barcelona-Pons, Pedro Garcia-Lopez, and Bernard Metzler

1 public class MergeAction extends Action {
private Map<Integer, Long> result;

2

3

4 public void onCreate() {

5 result = new HashMap<>();
6

}

8 public void onWrite(InputStream input) {
9 Stream<String> lines = input.lines();
10 lines.forEach(line -> {

11 result.merge(

12 Integer.parseInt(line.split(",")[0]),
13 Long.parseLong(line.split(",")[1]),
14 (val, acc) -> val + acc);

15 s

16 }

18 public void onRead(OutputStream output) {
19 output.writeObject(result);

20 output.close();

21 }

22 %}

Listing 1: Action definition to perform an aggregation.

7 EVALUATION

Goals and scope. The objective is to understand the benefits of
Glider for serverless data processing workloads. To this end, we
use the following key indicators: (i) the amount of data transferred
between compute (FaaS) and storage systems, (ii) the number of
data transfers between the systems, (iii) the temporary storage
utilization, and (iv) the overall application performance. Glider en-
joys storage features from Apache Crail and is compatible with
Pocket’s automatic scaling. These are orthogonal to our goals and
we do not evaluate them. Instead, we focus on Glider’s new con-
tributions to face data-shipping issues. Our evaluation campaign
starts by exploring the benefits of Glider in the above indicators for
different common patterns in serverless analytics (§7.1). Then, we
characterize actions with micro-benchmarks (§7.2) and finish with
two real-world workloads: a distributed sort (§7.3) and a genomics
variant calling pipeline (§7.4). Our baseline for comparison is the
state-of-the-art approach for serverless analytics, i.e., serverless
workers generate intermediate data that write and read from remote
storage throughout different computation stages. We follow the de-
scriptions of PyWren [22], the AWS Lambda MapReduce reference
architecture [3], and Pocket [27].

Setup. We use a cluster of servers driving two Intel® Xeon® CPU
E5-2690 @ 2.90GHz (16 physical cores) and 96 GiB of memory. The
network link is a 100 Gbps Mellanox Technologies ConnectX-5
MT27800. We run each storage server alone in a machine, meaning
that all communication between actions and other elements is
remote. All active servers have enough CPU to dedicate one core
to each action. Data servers are DRAM-backed. All experiments
require a single metadata server. We simulate serverless workers
(FaaS) as processes in another machine in the same cluster. The
genomics variant calling pipeline is fully evaluated on AWS Lambda
and up to 25 EC2 machines.

7.1 Benefits

Impact of actions on data movement. We evaluate this effect in
a common data processing pipeline where distributed workers

Glider: Serverless Ephemeral Stateful Near-Data Computation

Table 2: Data processing pipeline on 10 GiB with 10 workers.

Ingested Time (s) Throughput

Data-shipping 10 GiB 28.866 2.98 Gbps
Glider 25.7 MiB 10.813 7.94 Gbps
Glider (RDMA) 25.7 MiB 9.182 9.36 Gbps

(FaaS) need to ingest data from storage, but data needs to be parsed,
arranged, or pre-processed before the main computation.

In this situation, Glider’s opportunity for improvement consists
in offloading pre-processing to actions. Instead of reading the full
files, workers read from actions that act as proxies. With this ap-
proach, the communication between workers and storage is reduced
to already prepared data, while actions achieve faster data access
thanks to near-data execution within the storage system.

We consider an example of word counting where text files need
to be filtered on a per line condition first. We run Glider’s approach
against the baseline with around 10 GiB of data (Wikipedia backup
files [45]) and 10 workers (1 GiB each). This experiment uses one
active server, and one data server (for files).

Table 2 summarizes the results. With actions, data transfer be-
tween workers and storage is reduced by 99.75%. This reduction
is key when the workers have limited network bandwidth (like in
FaaS) and data transfer contributes importantly to execution cost.

Impact of actions on storage accesses. We study this impact in a
situation where data generated by a set of workers (FaaS) must be
aggregated. The baseline approach uses another worker to perform
the reduction. This means that intermediate data must be stored in
full and then read back by the reduce worker.

Here, Glider’s opportunity for improvement consists in pushing
the reduction actions. This is possible since actions are stateful, and
it eliminates a stage in the compute tier with its extra storage con-
nections. Action will receive data concurrently (with interleaving)
from multiple workers while they perform the aggregation.

We illustrate this situation with a synthetic example. Workers
generate random numeric pairs (key, value) that they emit as strings.
The reducer adds the values for each key in an aggregated dictio-
nary. The generated keys are 1024 distinct integers, and the values
comprise the full range of a Java Long. Each worker generates 50M
pairs: just over 1 GiB of data when sent through network. This
experiment uses one active and one data servers.

Figure 5 presents the results for different numbers of workers.
Glider cuts storage accesses by half (50%). Indeed, instead of (1)
sending the intermediate data, (2) reading it in full again, to then (3)
write the result so it is (4) available for the next stage, actions require
a single connection to (1) send the data and the result becomes (2)
available for the next stage. Thanks to that, data movement is also
halved in this case (see Figure 5 right).

Impact of actions on storage utilization. The previous aggregation
also evidences the advantage of Glider in storage utilization. While
the baseline needs to save all generated data in storage (about
11 GiB with 10 workers), actions process the input stream as it is
generated, storing only the resulting dictionary (~24 KiB). In this
case, storage utilization is reduced by approximately 99.8%.

Author’s preprint version — do not distribute.

Middleware *23, December 11-15, 2023, Bologna, Italy

Baseline N Glider .

)

200 - - 20 %

by <

£ - -10 §

e 100 &

S

3]

0

0 1 2 5 10 1 2 5 10 a

Number of Workers

Figure 5: Reduce operation with Glider against a data-
shipping model. Left shows total time elapsed. Right shows
data transferred between application workers and storage.

Impact of actions on performance. The first example shows a 2.7x
performance boost and, in the second, Glider reduces execution
time by up to 27% with 5 workers. Several factors contribute to this
matter. First, less data ingestion directly affects total application run
time. We simulate them on a fast network, but serverless functions
have limited bandwidth and benefit even more from this matter.
Second, the elimination of computation stages (offloading them
to actions) reduces storage utilization and simplifies connections.
This also removes the need to transfer the full data back to the
compute tier and, hence, lowers data movement again with the
above benefits. Lastly, an important performance booster is the
ability to stream data between workers and actions. This type of
pattern is not possible between serverless functions, but it allows
actions to work in parallel with workers to speed up applications.

To illustrate the first point, consider the ingestion example (Ta-
ble 2). Since it runs in a setup where workers and storage are in
the same network, there is no difference to read files from workers
and actions. The boost seen is possible thanks to the parallelism
explained above: actions filter data at the same time that workers
count words. However, action integration within the storage sys-
tem allows them to exploit locality or use advanced technologies.
We demonstrate this with an RDMA-enabled high-performance
network. Actions exploit this technology, unavailable for serverless
workers, to speed up performance to 3.14X.

7.2 Micro-benchmarks

Action bandwidth. The objective is to assess the bandwidth to an
action against a base storage file. The extra logic necessary to run
arbitrary code on actions suggests a small penalty to be expected.

The experiment writes and reads 10 GiB to/from each data type
for varying operation sizes (buffer size). We use direct streams to
take full control of operations. To maximize network utilization,
asynchronous operations are done in batches to always keep data
transfers in flight without collapsing the network. We adjust the
batch size to achieve best performance on each configuration. Note
that operations with more than 1 MiB surpass block size and would
be split into smaller operations. Actions run empty methods.

The top of Figure 6 shows the average results. Actions do not
add overhead with respect to files. Read operations achieve at most
11% less bandwidth, while writes reach up to 12% higher bandwidth
since they do not require allocating new blocks as the data grows
and skip communication with the metadata server.

Middleware *23, December 11-15, 2023, Bologna, Italy

Read Write

File
2 20° / - — Action
5 10 - -

1 1 1 1 1 1 1 1

128 256 512 1024 128 256 512 1024
Buffer Size (KiB)
5

O //"
& - -
a 25 /
! ! ! 1 ! ! !

0 1
1 2 4 8 1 2 4 8
Number of Actions

Figure 6: Average access bandwidth to files and actions for
different buffer sizes and number of concurrent actions.

Action scale. We evaluate the capacity of actions to leverage
the full compute and network resources in their storage space.
We use the same setup of the previous experiment with 1 MiB
operations and replicate it up to 8 parallel actions. Each action still
transfers 10 GiB and is accessed by a dedicated client. The active
storage space runs 8 network threads to enable this parallelism and
bandwidth is computed globally for the aggregated result.

Figure 6 bottom shows the results. Running parallel actions im-
proves bandwidth but plateaus around 45 Gbps (which we identified
as the limit for TCP operations in the cluster). Similar results are
drawn from the same experiment assessing files. We conclude that
actions scale to the resources of their storage space.

7.3 Distributed sort

In this section, we evaluate Glider’s benefits in a real world appli-
cation. In particular, we study a distributed sort of data. Serverless
shuffle operations generate a lot of intermediate data and, conse-
quently, large data transfers (§2). Sorting is a severe example of
this, because the temporary data generated contains the full input
dataset [33, 37]. Since functions are stateless, each stage needs to
read and write everything, and with the resource limitations of
functions, this process becomes slow and expensive.

Our baseline is an implementation following the common ap-
proach [3, 22, 27]. To perform a sort, a set of workers compute
in two phases (map (P1) and reduce (P2)). The input dataset, the
intermediate data, and the resulting sorted data are saved in the
storage system as files (in data servers). The first stage reads the
input dataset and, using a sorting key, distributes the text between
the reducers. Each worker generates a file for each reducer (inter-
mediate data). In the second stage, reducers read back these files,
sort their content, and write the result again.

Glider improves this situation by pushing the reduce to storage.
This mechanism is similar to a scaled version of Figure 4. It presents
three clear advantages. First, an entire stage of workers is no longer
needed, which reduces the number of storage accesses. Second, with
less storage accesses, less data must be transferred in and out of the
storage system. And third, thanks to actions and the I/O streams,
part of the sorting is done in parallel to the first stage, without
waiting for the shuffle to finish. In detail, first-stage workers do not
write into files, but send the classified data to the actions. Note that

Author’s preprint version — do not distribute.

10

Daniel Barcelona-Pons, Pedro Garcia-Lopez, and Bernard Metzler

1 -
> 50 M Baseline P1
g 100 - Baseline P2
= 50 - I Glider P1
__-__-_-_-._‘ Gliderp2
0 1 2 4 8 16
Number of Workers

Figure 7: Sort execution time with Glider against a data-
shipping approach. Each worker processes 1 GiB.

the process of writing is unchanged since actions and files share
the same interface. As actions receive data through a stream, they
parse and keep it in memory (P1). When all workers have finished,
the actions sort the data and write the result as new files (P2).

To explain these benefits, let us recount and compare the amount
of data movement in each approach. The baseline implementation
fully reads and writes the entire dataset to storage twice; accounting
for a data transfer of four times the size of the data. Glider only
reads and writes once, since it only employs one stage of workers
outside storage. In the second phase, actions do not read the data
(which is streamed to them by the workers) and write the result
from within the storage cluster. Therefore, data transfer is cut to
just twice the dataset size, for a 50% reduction in data movement.

For the experimental comparison, we use a randomly generated
dataset with 1 GiB partitions. We evaluate with up to 16 workers,
each of them reading a full partition (i.e., 16 workers sort 16 GiB).
Both phases use the same number of workers and actions. This
experiment uses two active and one data servers with uniform
action distribution.

Figure 7 presents the results. The solution with actions is always
faster than the baseline approach. In particular, Glider reduces run
time by 49.8% with 16 workers. The baseline keeps the map phase
time (P1) constant, but the reduction (P2) is slow due to shipping
intermediate data back from far storage. On the contrary, Glider
is slower during the first phase (P1) because it includes actions
parsing the data. However, the second phase (P2) is up to 71% faster
since actions avoid the extra data transfer.

7.4 Genomics variant calling

To complete the evaluation, we consider Glider’s targeted environ-
ment: a cloud deployment in collaboration with serverless functions.
We assess a distributed variant calling pipeline. Variant calling is a
genomics process to identify genetic variants through the alignment
of sequencing data to a reference genome. This allows to identify
where sequence reads differ from the reference and has many im-
portant uses in health research. Reference genomes are stored in
the FASTA format and are sized from some MiB to over 100 GiB. Se-
quencing reads are collected in the FASTQ format and can grow up
to several TiB. These sizes require a huge amount of data transfers
during computation, which rapidly become a problem in traditional
cluster computing and present important challenges in serverless
settings. It clearly manifests the issues of data-shipping.

Glider: Serverless Ephemeral Stateful Near-Data Computation

Glider

Baseline

Figure 8: Diagram of the variant calling pipeline for a single
FASTA chunk i with serverless functions and Glider.

We study a baseline solution following the Map-Reduce model
atop serverless functions and cloud object storage. The process
compares a FASTQ sequencing file against a reference FASTA file.
To scale, the FASTA and FASTQ files are split into a and q chunks re-
spectively. The process requires matching all FASTQ chunks against
all FASTA chunks, creating m = aq map tasks, each generating a
temporary file with the aligned reads. Due to chunking, these files
contain partial results that need aggregation. The aggregation sorts
and combines all intermediate files from a FASTA chunk into a file
with the variants called. This task may be scaled to r reducers per
FASTA chunk. Hence, shuffling data is required. The resulting files
may be appended in order into a single final file.

The specific implementation runs on AWS. The left side of Fig-
ure 8 shows the process for one FASTA chunk. Mapper tasks are
modelled as AWS Lambda functions with input and output to Ama-
zon S3. We simplify the map computation (to only produce the inter-
mediate data) to focus on the data shuffle. Shuffling with serverless
functions is tricky [33, 37]. To tailor the number of reducers (r) and
their data ranges to the size of the intermediate data, the baseline
uses S3 SELECT to first sample the files. This allows to explore the
tradeoff between parallelism and function memory utilization. The
reducer functions use S3 SELECT again to download only the parts
of the temporary files they need, achieving the data shuffle. This
avoids reducers ingesting data outside their range.

Glider presents an opportunity to improve the reduction stage.
The right side of Figure 8 shows the process for one FASTA chunk.
Instead of writing temporary files to S3 and requiring S3 SELECT to
read them multiple times for shuffling, mappers directly write their
output to Glider actions (Sampler Action). This first set of actions
sample the data as they receive it and store it on ephemeral files.
When the mapper functions finish, these actions quickly interact
with a manager action that computes the number of reducers and
their data ranges. Reduce functions connect with another set of
actions (Reader Action). These exploit near-data computation to
solve shuffling and provide reducers a single stream with the ranges
of data they need from the multiple temporary files.

With this approach, similar to S3 SELECT before, reducers only
ingest their range of data. However, it also adds the following

Author’s preprint version — do not distribute.

11

Middleware *23, December 11-15, 2023, Bologna, Italy

Il B Map Il B Ranges B Reduce
BN G Map G Ranges G Reduce
300 -
@
5 200 -
E
“ 100 -
1x5,1 2x10,1 3x20,2 5x20,2 20x35,2-3
250 MiB 1GiB 225GiB 45GiB 32 GiB

Figure 9: Serverless genomics variant calling. Execution time
with Glider (G) against the baseline (B). Labels are axq, r show-
ing the number of chunks and reducers per FASTA chunk
with an approximate size of the temporary files.

benefits: (1) intermediate data is sent to a specialized ephemeral
store, faster than object storage; (2) intermediate files and actions
are in the same system for improved data access; (3) a single storage
request is enough to access multiple temporary files; (4) stateful
computation enables more flexible data processing than S3 SELECT
(limited to simple SQL SELECT queries on specific data formats);
and (5) computations are streamlined with data transfers thanks
to I/O streams, allowing parallelism between mappers and data
sampling and reducers and data shuffling. As an example, the last
two points allow to provide each reduce worker with a single sorted
data stream. On the contrary, the baseline solution needs to open
requests to multiple storage objects and sort their content in full as
part of the aggregation process.

We run this comparison with the Human Genome FASTA file
(3 GiB) and the SRR15068323 FASTQ file (5.25 GiB) [32]. These are
split into a = 20 and g = 35 chunks. Hence, the full experiment
runs m = 700 mappers. The intermediate files (about 32 GiB) are
shuffled to r = 2 or 3 reducers per FASTA chunk (total of 47). We
run partial executions with a subset of the chunks to evaluate scale.
Map and reduce Lambda functions are configured with 2 GiB and
8 GiB respectively. Glider is deployed with one metadata server
(t3.xlarge), up to 4 data servers (ré6ilarge), and up to 20 active servers
(c5.12xlarge). Data and actions are uniformly distributed across
nodes in their tiers.

Figure 9 draws the results. Compared with the baseline, Glider
allows to avoid a full read of the intermediate data to perform
sampling. This minimizes storage accesses and eliminates 1/3 of the
intermediate data transfer. The baseline transfers the intermediate
data 3 times (mappers write, samplers read, and reducers read),
while Glider only twice (mappers and reducers). Consequently, our
solution with actions is always faster than the baseline. The plot
shows how this behavior is kept with scale. In particular, Glider
reduces execution time by 36% with the full data. The map stage is
slower with Glider since it includes data sampling at the actions.
However, this allows a much faster range distribution. Finally, the
reduce is also faster due to the benefits above, including lower
data ingestion to workers, a richer data processing on actions, and
streaming data transfer.

Middleware *23, December 11-15, 2023, Bologna, Italy

8 RELATED WORK

Data-shipping is a well-known problem in the serverless computing
model that creates heavy data transit, strains the network, and
often becomes a bottleneck [20, 23, 26, 41]. We highlight three main
approaches to tackle it (left to right in Figure 1): (A) optimized
disaggregation of compute and storage, (B) introduction of storage
within a Faa$S platform or vice-versa, and (C) disaggregation with
task offloading. The three currently fall short to effectively solve it.

Optimized disaggregation. The first approach (a in Figure 1) ex-
ploits the fast elasticity of FaaS to obtain massive parallelism [3, 22].
However, huge intermediate data must be transferred between
functions through disaggregated storage. Commonly, cloud object
storage is chosen due to its high bandwidth. Nonetheless, it quickly
becomes a bottleneck in large data processing workloads [8, 20, 23].
Concerned by this, some works explore configuration optimizations
based on the amount of data [37] or combine multiple storage solu-
tions [33]. Others search for ways to achieve function to function
communication [12, 17], or share application state between func-
tions in remote memory [9, 25]. Pocket [27] focuses on improving
file-based access for serverless workers in an elastic multi-tenant
store. All these examples evidence the data-shipping issue and the
struggle of insufficient tools in the cloud. Despite the efforts, none of
these works confront the fundamental challenges of data-shipping:
reduce the amount of data being transferred during computation.

Unified systems. Several projects implement Faa$ atop a stor-
age system or vice-versa (B in Figure 1). Their goal is to co-locate
computation and its data (caching it). One line of research opts to
modify the FaaS platform to co-locate related functions and allow
shared memory between them [2, 40]. Differently, some projects
implement a Faa$ platform on top of a storage system [41, 47]. An-
other trend is to exploit existing serverless platforms to build cache
stores on the function resources themselves [31, 35, 43, 46]. All these
projects fully couple storage and computation in shared resources,
which has been discouraged in the past [11, 36]. In particular, this
approach creates interferences between the storage and compute
features. Managing the scale of both components jointly is usually
inefficient for one, or both, of them. Consequently, computation
cannot scale freely like it usually does in dedicated FaaS$ platforms
and their storage capacity is very limited, which is unfitting for
large intermediate data.

Computation-enabled storage. For distributed storage systems,
close to the data computation has been studied as active storage [34].
Active storage [7, 19, 30] uses computing resources in the stor-
age system to enable analytics frameworks (e.g., Apache Spark)
to offload operations on them (c in Figure 1). Accessing storage
elements triggers the execution of simple stateless interceptions
that may transform data in-line. These works demonstrate huge
data transfer savings between compute and storage tiers and an
effective way to counteract data-shipping in cluster computing.
In the cloud, a multi-tenant setting, data access and management
follows different methods than in clusters and resource contention
becomes an important issue for active storage [11, 36]. Amazon S3
SELECT [6] controls this with predefined operations (simple SQL
SELECT queries), but it becomes too limited in versatility for many
applications (§7.4). As a solution, Zion [36] proposes an architecture

Author’s preprint version — do not distribute.

12

Daniel Barcelona-Pons, Pedro Garcia-Lopez, and Bernard Metzler

with an active storage layer correctly isolated from the storage re-
sources that intercepts data accesses with user-provided functions.
Yet, it is limited to stateless interception of the data path. Similarly,
S3 Object Lambda [4] creates an alternative S3 endpoint that inter-
cepts all object accesses with AWS Lambda functions. However, it
cannot be considered near-data computation since it runs on the
usual Lambda resources and not within the storage service. It, thus,
follows approach A and suffers from far data transfers [39].

Actions and actors. Glider actions resemble actors [10, 28] in their
execution and concurrency models, but with significant differences.
Actors are typically durable, event/message-based entities, while
actions are designed to handle large temporary data transfers with
I/O streams. Azure Durable Entities [29] offers actors (with limita-
tions) as a serverless service. Flink StateFun [15] similarly creates
stateful entities. These solutions still require large data movement
between compute and storage since they persist actor state in a
remote store that is fed to them between activations.

9 CONCLUSION

We introduce Glider, a cloud storage service model addressing the
data-shipping problem in serverless analytics. Its primary contri-
bution lies in the integration of ephemeral near-data computation
within a storage service specifically designed to collaborate with
existing FaaS platforms. As far as our knowledge goes, Glider is the
first solution to incorporate stateful ephemeral computation into
ephemeral storage, tailored for intermediate data. The main objec-
tive is to minimize the amount of data transferred between compute
and storage systems, thereby optimizing the connections between
various stages of serverless functions. To achieve this, Glider intro-
duces storage actions as named storage elements within the storage
namespace. They do not only encapsulate stateful computation but
also provide I/O streams to efficiently handle large volumes of data.

Our evaluation demonstrates the benefits of Glider. Specifically,
we showcase substantial reductions in data transfers between the
compute and storage tiers, reaching up to 99.75%. Moreover, Glider
promotes efficient data flow, resulting in decreased intermediate
data volume and storage space utilization up to 99.8% in certain
scenarios. Collectively, these improvements effectively enhance
application performance. For example, a distributed sort operation
on 16 GiB becomes 49.8% faster, and an intensive serverless vari-
ant calling process with over 700 serverless functions improves
execution time by up to 40%.

Therefore, serverless stateful near-data computation proves to
be an asset in enhancing the programmability and performance of
cloud applications, benefiting both cloud platforms and their users.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Haris Volos
for their valuable feedback. Daniel Barcelona-Pons was with IBM
Research Europe, Zurich while performing this work; he thanks all
the colleagues at the Cloud Data Platforms group. Thanks to Xavier
Roca for his help. This work is partially funded by the Horizon Eu-
rope programme under grant agreements No. 101092644 (Neardata),
101092646 (CloudSkin), and 101093110 (Extract).

Glider: Serverless Ephemeral Stateful Near-Data Computation

REFERENCES

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. 1998. Active Disks: Programming

[10

[11

[12

[13

[14

[15

[16

[17

]

]

]

]

]

]

Model, Algorithms and Evaluation. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages and Operating
Systems (San Jose, California, USA) (ASPLOS VIII). Association for Computing
Machinery, New York, NY, USA, 81-91. https://doi.org/10.1145/291069.291026
Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 923-935. https://www.
usenix.org/conference/atc18/presentation/akkus

Amazon Web Services. 2019. Serverless Reference Architecture: MapReduce.
Retrieved September 15, 2023 from https://github.com/awslabs/lambda-refarch-
mapreduce

Amazon Web Services. 2021. S3 Object Lambda. Retrieved September 15, 2023
from https://aws.amazon.com/s3/features/object-lambda/

Amazon Web Services. 2023. Introducing AWS Lambda response streaming.
Retrieved September 15, 2023 from https://aws.amazon.com/blogs/compute/
introducing-aws-lambda-response-streaming/

Amazon Web Services. 2023. S3 Select. Retrieved September 20,
2023 from https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-
content-from-objects.html

Alex Barcelo, Anna Queralt, and Toni Cortes. 2022. Revisiting active object
stores: Bringing data locality to the limit with NVM. Future Generation Computer
Systems 129 (2022), 425-439. https://doi.org/10.1016/j.future.2021.10.025
Daniel Barcelona-Pons, Marc Sanchez-Artigas, Gerard Paris, Pierre Sutra, and
Pedro Garcia-Lopez. 2019. On the FaaS Track: Building Stateful Distributed Appli-
cations with Serverless Architectures. In Proceedings of the 20th International Mid-
dleware Conference (Davis, CA, USA) (Middleware ’19). Association for Computing
Machinery, New York, NY, USA, 41-54. https://doi.org/10.1145/3361525.3361535
Daniel Barcelona-Pons, Pierre Sutra, Marc Sanchez-Artigas, Gerard Paris, and
Pedro Garcia-Lopez. 2022. Stateful Serverless Computing with Crucial. ACM
Trans. Softw. Eng. Methodol. 31, 3, Article 39 (mar 2022), 38 pages. https://doi.
org/10.1145/3490386

Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen
Thelin. 2014. Orleans: Distributed Virtual Actors for Programmabil-
ity and Scalability. Technical Report MSR-TR-2014-41. Microsoft.
https://www.microsoft.com/en-us/research/publication/orleans-distributed-
virtual-actors-for-programmability-and- scalability/

Chao Chen, Yong Chen, and Philip C. Roth. 2012. DOSAS: Mitigating the Resource
Contention in Active Storage Systems. In 2012 IEEE International Conference on
Cluster Computing. IEEE, New York, NY, USA, 164-172. https://doi.org/10.1109/
CLUSTER.2012.66

Marcin Copik, Roman Bohringer, Alexandru Calotoiu, and Torsten Hoefler. 2023.
FMI: Fast and Cheap Message Passing for Serverless Functions. In Proceedings
of the 37th International Conference on Supercomputing (Orlando, FL, USA) (ICS
’23). Association for Computing Machinery, New York, NY, USA, 373-385. https:
//doi.org/10.1145/3577193.3593718

Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.
NICA: An Infrastructure for Inline Acceleration of Network Applications. In 2019
USENIX Annual Technical Conference (USENLX ATC 19). USENIX Association,
Renton, WA, 345-362. https://www.usenix.org/conference/atc19/presentation/
eran

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accel-
erated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). USENIX Association,
Renton, WA, 51-66. https://www.usenix.org/conference/nsdi18/presentation/
firestone

Apache Flink. 2022. Stateful Functions. Retrieved September 15, 2023 from
https://nightlies.apache.org/flink/flink- statefun- docs-master/

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 475-488. http://www.usenix.org/conference/atc19/presentation/
fouladi

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bal-
asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,

Author’s preprint version — do not distribute.

13

[18

[19

[20

[21]

[22

)
&

[24

[25

[27]

[31

[32

@
&

[34

Middleware *23, December 11-15, 2023, Bologna, Italy

Boston, MA, 363-376. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

Glider. 2023. GitHub. Retrieved September 15, 2023 from https://github.com/
CLOUDLAB-URV/glider-store

Ratl Gracia-Tinedo, Marc Sanchez-Artigas, Pedro Garcia-Lopez, Yosef Moatti, and
Filip Gluszak. 2019. Lamda-Flow: Automatic Pushdown of Dataflow Operators
Close to the Data. In 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). IEEE, New York, NY, USA, 112-121. https:
//doi.org/10.1109/CCGRID.2019.00022

Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless Com-
puting: One Step Forward, Two Steps Back. https://doi.org/10.48550/ ARXIV.
1812.03651

K. R. Jayaram, Vinod Muthusamy, Parijat Dube, Vatche Ishakian, Chen Wang,
Benjamin Herta, Scott Boag, Diana Arroyo, Asser Tantawi, Archit Verma, Falk
Pollok, and Rania Khalaf. 2019. FfDL: A Flexible Multi-Tenant Deep Learning
Platform. In Proceedings of the 20th International Middleware Conference (Davis,
CA, USA) (Middleware ’19). Association for Computing Machinery, New York,
NY, USA, 82-95. https://doi.org/10.1145/3361525.3361538

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the Cloud: Distributed Computing for the 99%. In Proceedings of
the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17).
Association for Computing Machinery, New York, NY, USA, 445-451. https:
//doi.org/10.1145/3127479.3128601

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless
Computing. Technical Report UCB/EECS-2019-3. EECS Department, University
of California, Berkeley.

Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs
can be General and Fast. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 1-16.
https://www.usenix.org/conference/nsdi19/presentation/kalia

Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion Stoica.
2022. Jifty: Elastic Far-Memory for Stateful Serverless Analytics. In Proceedings
of the Seventeenth European Conference on Computer Systems (Rennes, France)
(EuroSys "22). Association for Computing Machinery, New York, NY, USA, 697-
713. https://doi.org/10.1145/3492321.3527539

Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,
and Animesh Trivedi. 2018. Understanding Ephemeral Storage for Serverless
Analytics. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 789-794. https://www.usenix.org/conference/atc18/
presentation/klimovic-serverless

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Server-
less Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427-444. https:
//www.usenix.org/conference/osdi18/presentation/klimovic

Lightbend. 2023. Akka. Retrieved September 15, 2023 from https://akka.io/
Microsoft Azure. 2023. Entity functions. Retrieved September 15, 2023
from https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-
functions-entities

Yosef Moatti, Eran Rom, Raul Gracia-Tinedo, Dalit Naor, Doron Chen, Josep
Sampe, Marc Sanchez-Artigas, Pedro Garcia-Lopez, Filip Gluszak, Eric Deschdt,
Francesco Pace, Daniele Venzano, and Pietro Michiardi. 2017. Too Big to Eat:
Boosting Analytics Data Ingestion from Object Stores with Scoop. In 2017 IEEE
33rd International Conference on Data Engineering (ICDE). IEEE, New York, NY,
USA, 309-320. https://doi.org/10.1109/ICDE.2017.243

Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel Hag-
imont, Noél De Palma, Bernabé Batchakui, and Alain Tchana. 2021. OFC: An
Opportunistic Caching System for FaaS Platforms. In Proceedings of the Sixteenth
European Conference on Computer Systems (Online Event, United Kingdom) (Eu-
roSys °21). Association for Computing Machinery, New York, NY, USA, 228-244.
https://doi.org/10.1145/3447786.3456239

National Library of Medicine. 2021. WGS of tumor sample from patient P94
(SRR15068323). Retrieved September 15, 2023 from https://trace.ncbi.nlm.nih.
gov/Traces/?view=run_browser&acc=SRR15068323

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENLX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 193-206. https://www.usenix.org/conference/nsdi19/presentation/

pu
Erik Riedel, Garth A. Gibson, and Christos Faloutsos. 1998. Active Storage for
Large-Scale Data Mining and Multimedia. In Proceedings of the 24rd International
Conference on Very Large Data Bases (VLDB ’98). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 62-73.

https://doi.org/10.1145/291069.291026
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://github.com/awslabs/lambda-refarch-mapreduce
https://github.com/awslabs/lambda-refarch-mapreduce
https://aws.amazon.com/s3/features/object-lambda/
https://aws.amazon.com/blogs/compute/introducing-aws-lambda-response-streaming/
https://aws.amazon.com/blogs/compute/introducing-aws-lambda-response-streaming/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://doi.org/10.1016/j.future.2021.10.025
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3490386
https://doi.org/10.1145/3490386
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://doi.org/10.1109/CLUSTER.2012.66
https://doi.org/10.1109/CLUSTER.2012.66
https://doi.org/10.1145/3577193.3593718
https://doi.org/10.1145/3577193.3593718
https://www.usenix.org/conference/atc19/presentation/eran
https://www.usenix.org/conference/atc19/presentation/eran
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://nightlies.apache.org/flink/flink-statefun-docs-master/
http://www.usenix.org/conference/atc19/presentation/fouladi
http://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://github.com/CLOUDLAB-URV/glider-store
https://github.com/CLOUDLAB-URV/glider-store
https://doi.org/10.1109/CCGRID.2019.00022
https://doi.org/10.1109/CCGRID.2019.00022
https://doi.org/10.48550/ARXIV.1812.03651
https://doi.org/10.48550/ARXIV.1812.03651
https://doi.org/10.1145/3361525.3361538
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://doi.org/10.1145/3492321.3527539
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://akka.io/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://doi.org/10.1109/ICDE.2017.243
https://doi.org/10.1145/3447786.3456239
https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR15068323
https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR15068323
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu

Middleware *23, December 11-15, 2023, Bologna, Italy

[35] Francisco Romero, Gohar Irfan Chaudhry, Ifiigo Goiri, Pragna Gopa, Paul Batum,
Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. 2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications.
In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SoCC °21). Association for Computing Machinery, New York, NY, USA, 122-137.
https://doi.org/10.1145/3472883.3486974

[36] Josep Sampé, Marc Sanchez-Artigas, Pedro Garcia-Lopez, and Gerard Paris. 2017.
Data-Driven Serverless Functions for Object Storage. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference (Las Vegas, Nevada) (Middleware ’17).
Association for Computing Machinery, New York, NY, USA, 121-133. https:
//doi.org/10.1145/3135974.3135980

[37] Marc Sanchez-Artigas, German T. Eizaguirre, Gil Vernik, Lachlan Stuart, and
Pedro Garcia-Lopez. 2020. Primula: A Practical Shuffle/Sort Operator for Server-
less Computing. In Proceedings of the 21st International Middleware Conference
Industrial Track (Delft, Netherlands) (Middleware 20). Association for Computing
Machinery, New York, NY, USA, 31-37. https://doi.org/10.1145/3429357.3430522

[38] Bo Sang, Pierre-Louis Roman, Patrick Eugster, Hui Lu, Srivatsan Ravi, and Gus-
tavo Petri. 2020. PLASMA: Programmable Elasticity for Stateful Cloud Computing
Applications. In Proceedings of the Fifteenth European Conference on Computer
Systems (Heraklion, Greece) (EuroSys °20). Association for Computing Machinery,
New York, NY, USA, Article 42, 15 pages. https://doi.org/10.1145/3342195.3387553

[39] Pablo Gimeno Sarroca and Marc Sanchez-Artigas. 2023. On Data Processing
through the Lenses of S3 Object Lambda. In IEEE INFOCOM 2023 - IEEE Conference
on Computer Communications. IEEE, New York, NY, USA, 1-10. https://doi.org/
10.1109/INFOCOM53939.2023.10228890

[40] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing. In 2020 USENIX Annual Technical Con-
ference (USENLX ATC 20). USENIX Association, Berkeley, CA, USA, 419-433.
https://www.usenix.org/conference/atc20/presentation/shillaker

Author’s preprint version — do not distribute.

Daniel Barcelona-Pons, Pedro Garcia-Lopez, and Bernard Metzler

[41] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,

Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proc. VLDB Endow. 13, 12 (jul 2020), 2438-2452.
https://doi.org/10.14778/3407790.3407836

Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana Klimovic, Adrian Schuep-
bach, and Bernard Metzler. 2019. Unification of Temporary Storage in the NodeK-
ernel Architecture. In 2019 USENIX Annual Technical Conference (USENIX ATC 19).
USENIX Association, Renton, WA, 767-782. https://www.usenix.org/conference/
atc19/presentation/stuedi

Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios
Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020. InfiniCache: Exploiting
Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache. In
18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX
Association, Santa Clara, CA, 267-281. https://www.usenix.org/conference/
fast20/presentation/wang-ao

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
133-146. https://www.usenix.org/conference/atc18/presentation/wang-liang
Wikimedia. 2023. Wikimedia downloads. Retrieved September 15, 2023 from
https://dumps.wikimedia.org/

Jingyuan Zhang, Ao Wang, Xiaolong Ma, Benjamin Carver, Nicholas John New-
man, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis, Vasily Tarasov, Feng
Yan, and Yue Cheng. 2022. Sion: Elastic Serverless Cloud Storage. https:
//doi.org/10.48550/ARXIV.2209.01496

Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing the
Gap Between Serverless and Its State with Storage Functions. In Proceedings
of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19).
Association for Computing Machinery, New York, NY, USA, 1-12. https://doi.
org/10.1145/3357223.3362723

https://doi.org/10.1145/3472883.3486974
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3429357.3430522
https://doi.org/10.1145/3342195.3387553
https://doi.org/10.1109/INFOCOM53939.2023.10228890
https://doi.org/10.1109/INFOCOM53939.2023.10228890
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.14778/3407790.3407836
https://www.usenix.org/conference/atc19/presentation/stuedi
https://www.usenix.org/conference/atc19/presentation/stuedi
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://dumps.wikimedia.org/
https://doi.org/10.48550/ARXIV.2209.01496
https://doi.org/10.48550/ARXIV.2209.01496
https://doi.org/10.1145/3357223.3362723
https://doi.org/10.1145/3357223.3362723

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Serverless and temporary data
	2.2 Data-shipping in serverless
	2.3 An overview of Glider
	2.4 Challenges

	3 Glider
	3.1 What code should we ship?
	3.2 Using storage actions

	4 System design
	4.1 NodeKernel in brief
	4.2 Storage actions

	5 Implementation
	6 Using Glider
	6.1 Application interface
	6.2 Developing actions
	6.3 Application example

	7 Evaluation
	7.1 Benefits
	7.2 Micro-benchmarks
	7.3 Distributed sort
	7.4 Genomics variant calling

	8 Related work
	9 Conclusion
	Acknowledgments
	References

